
ibm-capsense-usb

Installation: Model-F-USB-Rev

Tom Wong-Cornall
tom@wongcornall.com

July , 

Contents

 Compatibility 

 Required parts and tools 

 Precautions 
. Static electricity . 
. Removing/reinstalling parts . 
. Cabling . 
. Short circuits . 
. Cleanliness . 

 Removal of old controller and preparation 
. Opening case . 
. Removing old controller . 

 New controller installation 
. Mechanical installation . 
. Software installation . 

.. Linux and BSD . 
.. Windows . 
.. Mac OS X . 

 Controller setup 
. Initial voltage threshold setting 

.. “Current threshold” . 
.. “State” grid . 
.. Setting threshold . 

. Assigning base scancodes . 
.. Nodes with keys . 
.. Leftover nodes, autocalibration 
.. Loading/Storing/Importing/Exporting 



 Function keys and layers 
. Layer selection . 

.. Fn(, , ) scancodes . 
.. Select (Base, , , ) scancodes 
.. Expansion header . 

 Column skips 

 Expansion Header 
. Solenoid/Buzzer . 
. Lock LEDs . 
. Solenoid/Buzzer + Lock Switch 

 Updating firmware 
. dfu-programmer . 
. Atmel FLIP . 

 Troubleshooting 
. Unreliable sensing . 
. Layers . 

.. Layers aren’t selected when using Fn keys 
.. Rapid changing between layers with Fn keys 
.. Layers aren’t selected with Select keys/don’t reach ex-

pected layer with Fn Lock switch 

Appendix A: Installation in s and derivatives 
A. Mechanical installation . 

A.. Solder ribbon cable . 
A.. Attach ground wire . 
A.. Mounting . 
A.. Solenoid and switch . 

A. Controller setup . 

 Compatibility

The Model-F-USB-Rev is, as far as has been determined so far, compatible
with all IBM Model F keyboards, with the exception of XT keyboards and other
keyboards that have integrated controllers. s and derivatives (such as s
etc.) are compatible, with the addition of an adaptor and some modifications;
see Appendix A on page .

In general, as long as the keyboard has a .mm-pitch -position ribbon
cable, and conforms to the pinout in Figure  on the next page, then it should
work. Keyboards that have less than the  columns and/or  rows are still
compatible; the missing keys can just be ignored.

 Required parts and tools

In addition to the Model-F-USB-Rev controller, you will need a micro-USB
cable.



Figure : Pinout of Model F ribbon cable

A medium flat-head screwdriver and a small adjustable wrench (or tiny
socket set) will be necessary to open the case and remove the controller.

As the Model Fs have a controller soldered to a ribbon cable, a soldering
iron and some soldering equipment will be needed to remove the old controller
and install the new one. At a minimum, a solder-sucker will do the job of
desoldering the old controller; the addition of good quality solder wick will
make the job much easier and help prevent damage to the old controller and
the ribbon cable.

In addition, the USB software utility (“IBM Capsense USB Util”) will be
required to assign keycodes to each key (see Section . on page ).

 Precautions

Both the keyboards and the new controller are reasonably robust, but some
common-sense must be used. Be sure to observe the following points.

. Static electricity

The controller is a bare circuit board, so can be damaged by static electricity. Try
to keep your fingers off the components and pins, and discharge any static first
by touching something big and metallic, like the top-plate of your keyboard.
Be extra-cautious in low-humidity conditions, as you can build up a couple of
thousand volts in static electricity simply by walking across a room.

The same point goes for the original IBM controller; it would be a shame to
damage something that is now irreplaceable.

. Removing/reinstalling parts

Don’t force anything. Nothing on these keyboards should be so stubborn that
you need to use any strength to dismantle it. Check that you have removed
all screws and wires/cables (including carefully desoldering the ribbon cable)
before removing the original controller.

Be careful of cross-threading screws when they are re-installed, and make
sure all washers are retained.



. Cabling

Don’t kink or fold the micro-USB cable. If possible, try to make use of the
existing strain relief (for the original cable) to ensure tugging on the USB cable
after installation won’t pull the cable out of the socket, or rip the socket off the
controller.

Don’t bend the -core ribbon cable too much, especially near where it is
soldered into either the pad card or the controller. It is somewhat brittle, and it
is possible to snap the cores if it is treated roughly.

. Short circuits

Ensure the controller won’t come into contact with any metal parts or wires
that could cause shorts.

After the new controller is installed, carefully inspect the ribbon cable,
taking care to repair any damage to the insulation with electrical tape or similar.

Inspect both sides of the new controller, making sure there are no solder
bridges between pins or to components on the controller. Mop up excess solder
with solder wick.

. Cleanliness

Capacitive switching is very sensitive and deals with tiny signal levels. Dirt or
other contamination can intefere with the sensing and operation, especially if it
reaches the sense pads underneath each keyswitch on the pad card. Make sure
the keyboard and controller are both clean and tidy.

 Removal of old controller and preparation

. Opening case

Each keyboard is slightly different, but in general the bottom half of the case
can be removed with four or so screws on the underside of the keyboard. With
most keyboards the top half of the case can be left in place.

. Removing old controller

First remove the external cables. The main communication cable will attach to
the original controller via a push-in connector to some right-angle pin headers.

Some keyboards—probably just the PC-AT—have lock LEDs, connecting to
the same right-angle pin headers. Unplug these as well; in Section  on page 
you will see how to connect them via the expansion header.

Now you have the tricky job of desoldering the ribbon cable. There are two
nice articles on desoldering on http://pinballrehab.com. Gentle pulling of the
ribbon cable while heating the solder joint may help, but be careful not to pull
too hard and damage the insulation, which will be very soft.

In the worst cases, it may be easier to simply cut the ribbon cable close to
the old controller; you should be warned that stripping the insulation cleanly
from the resulting cable is harder than it might seem.



http://pinballrehab.com/1-articles/solid-state-repair/tutorials/164-basic-desoldering-tutorial
http://pinballrehab.com/1-articles/solid-state-repair/tutorials/165-advanced-desoldering-tutorial
http://pinballrehab.com

Try to keep the wires unfrayed and straight—remember you will have to
push them through the holes in the new controller.

Once the ribbon cable is desoldered and clear of the old controller, remove
the two screws holding it onto the brackets. Repair any damage to the ribbon
cable with electrical tape or similar so that it won’t cause shorts on the new
controller.

The old cable can be now be removed completely from the keyboard. When
removing the old cable, be careful to retain the strain relief, as it may come in
useful for retaining the micro-USB cable.

 New controller installation

. Mechanical installation

Figure : New controller (Rev) correctly installed into PC-AT, next to old
controller

. Route the micro-USB cable. If possible, make use of the original strain
relief. Leave enough slack so the cable will almost meet the controller
bracket on the right-hand-side of the keyboard (when viewed from the
top).

. Correctly orientate the controller. The text/logo on the controller should
be visible and readable if you were viewing the keyboard from a normal
typing position (if the top cover is still in place, imagine you are looking
through it). See Figure  for an example.

. Insert the ribbon cable through the top of the controller and out the back—
the same direction the ribbon cable passed through the old controller

. Carefully solder the ribbon cable in place. Be careful not to cause any
bridges/shorts on either side of the controller.



. Screw the new controller to the brackets. You will probably only be
able to get one screw in, on the right-hand-side of the controller (when
viewed from the top of the keyboard, which should be plenty; on most
keyboards this will be the lower screwhole, but on  keyboads
( “Kishsavers”) you will use the top screwhole.

. Make a final check to see all cores in the ribbon cable have good solder
joints, without bridging (check some of the small surface-mount compo-
nents on the other side), and that the screw is making good contact (good
grounding to the keyboard top/bottom plates is very important)

. With the PC-end disconnected, plug in the USB-micro cable, and check
that your OS recognises the new USB device

. Software installation

The PC-side software can be obtained (along with firmware updates, schematics
etc.) from http://downloads.cornall.co/ibm-capsense-usb.

In general, you want the latest version. Check, however, that your ver-
sion matches at least the MINOR version number (version numbering being
MAJOR.MINOR.PATCHLEVEL) of the firmware (you will be able to see this once
you have started the software).

Running the software should detect the board immediately, and begin read-
ing scancodes and settings back from the keyboard, before presenting the user
interface. If multiple ibm-capsense-usb controllers are plugged in, a menu will
be presented to allow selection between them.

.. Linux and BSD

Linux and BSD users should compile their own binary from the source distribu-
tion (files named ibm-capsense-usb x.y.z.tar.gz).

Prerequisites include Qt (preferably version ≥.., although it can be com-
piled with some limited functionality on Qt .) and hidapi. These are probably
available from your package manager.

Enter the ibm-capsense-usb x.y.z/src/util/ directory, then it should be
a matter of simply typing qmake the first time to generate a makefile, then
make. The resulting binary is named ibm capsense usb util and placed in
ibm-capsense-usb x.y.z/src/util/src.

.. Windows

Pre-compiled binaries are available for most versions. The files are named in
the format ibm-capsense-usb-util x.y.z.zip.

Plugging in the keyboard the first time may cause some versions of Windows
to spend a long time searching for “drivers”. Experimentation seems to suggest
clicking “Skip” is perfectly safe.

There is no installer or setup necessary; running the file named ibm_

capsense_usb_util.exe should suffice.



http://downloads.cornall.co/ibm-capsense-usb
http://www.signal11.us/oss/hidapi/

.. Mac OS X

Pre-compiled binaries are available for most versions. The files are named in the
format ibm-capsense-usb-util x.y.z.dmg. These can be installed as normal
disk images.

 Controller setup

All setup is performed using the software utility.
When you first start the utility, you will be presented with the screen shown

in Figure .

Figure : First startup of GUI util

First, check the keyboard type and versions are as expected (in the “Info”
section of the util).

. Initial voltage threshold setting

.. “Current threshold”

Check the “Current threshold” value under “Voltage threshold”. This should be
sitting at . Using the “Auto-calibrate” button will not do anything useful
at this stage—don’t try it just yet.

.. “State” grid

Next, take note of the “State” section. This grid of  cells— wide and 
high—represent the sensed state of each node in the keyboard matrix. With
a voltage threshold of , every node should be white (meaning released).
Pressed nodes are shown as dark grey cells.

Mousing over a particular cell will show its co-ordinates within the matrix.
Pressing a key will elicit no change in this “State” overview. You must now

set the voltage threshold so keys that you press will correctly show up in the
grid



.. Setting threshold

Gradually lower the threshold towards , stopping to press keys now and again
to see if they register. The permissible range is –, but you will probably
find the keys will correctly register somewhere within a wide band between
 and .

At some point, you will notice some keys will appear as pressed that don’t
correspond to physical keys. There are usually no more than  or  of these.
These will come into play later on with auto-calibration. Figure  shows a
keyboard with a calibration node registering at coordinates (, ). If your keys
are registering correctly but you don’t see a pressed “calibration key”, keep
lowering the threshold—you will not be able to autocalibrate without finding
one.

Figure : PC-AT keyboard with sense threshold correctly set

Try to find a threshold where pressing keys across the keyboard register
correctly, don’t falsely cause their neighbours to trigger (try pressing many keys
at once in different combinations—full NKRO should be achievable), and don’t
flicker on/off. For now, remember the value in case auto-calibration fails later
on.

. Assigning base scancodes

Neither the controller nor the software know anything about the physical layout
of your keyboard just yet. You must assign scancodes to each key before it will
be recognised in your OS. Assigning certain special scancodes is also necessary
for auto-calibration to work when you plug your keyboard in, or reboot your
computer.

.. Nodes with keys

Change to the “Base Layer” tab. Each node is represented by a drop-down box,
mapping to a node in the same position as the cells on the “State” overview.
Currently these will all be set to “(Ignored)”. The background of pressed keys
will be highlighted in the same way as the cells in the overview; you can see an
example in the first row of the third column in Figure  on the next page.



Figure : Blank layout

Now, press a key on your keyboard, checking to see where in the overview
and on the layout drop-downs the corresponding node responds—you may
need to scroll left and right to find it. Choose an appropriate scancode from
the drop-down. The new key will take effect immediately; test it out by typing
elsewhere.

Repeat this for all of the keys on your keyboard.

.. Leftover nodes, autocalibration

You will be left with the pressed nodes that don’t correspond to actual keys, as
well as a few released nodes that don’t have an associated key either.

This is a good thing—if you are careful to set these to either the special
“(PRESSED)” or “(RELEASED)” scancodes correctly, the auto-calibration func-
tion will be able to operate correctly in most cases. Auto-calibration requires at
least one of each type of special scancode to work.

Figure  on the following page shows a partial example of a correctly config-
ured PC-AT keyboard.

Once you have these special scancodes set (along with the rest of the key-
board’s normal scancodes), try the “Auto-calibrate” pushbutton. If it gives a
useful voltage threshold value (if it’s different to the value you derived yourself
in Section .. on the previous page, check to make sure your keys still all
register and don’t “ghost”), you can choose to have the keyboard auto-calibrate
on startup every time.

If the value isn’t suitable—some keyboards are stubborn—try playing with
the special scancodes (try setting some to “(IGNORED)”). In the worst case,
click the “Store override in EEPROM” button to save a forced value, avoiding
auto-calibration.



Figure : PC-AT with layout set—note “(PRESSED)” and “(RELEASED)” scan-
codes

.. Loading/Storing/Importing/Exporting

At the very least, you will want to click “Store in EEPROM” to save the layout
you have created to the controller persistently, otherwise the next time you
unplug it or reboot it will be lost.

You can also restore the saved layout using “Load from EEPROM” if you
have made changes you don’t like.

Exporting and importing from disk allows backing up layout configs; the
resulting file also contains all of the other user-modifyable settings on the
controller, with the exception of the voltage threshold. The file format is in
plain text, and can be manipulated with a text editor.

 Function keys and layers

The firmware supports has three additional layers for extra scancodes. These
can be mapped in the same way as the base layer, by clicking on the “Layer
(, , )” tabs. Be sure to save your settings with “Store to EEPROM” before
unplugging/rebooting.

. Layer selection

There are three ways to access subsequent layers:

.. Fn(, , ) scancodes

Assigning a key on the base layer to one of Fn, Fn or Fn allows accessing
layers while they’re held. It isn’t quite as simple as that, however:

• You must set up a “condition” on the “Layer Conditions” tab; this allows
setting up combinations of more than one Fn key—one example is shown
in Figure  on page 



• Fn keys are also recognised on subsequent layers; this means you will
probably want to choose the same Fn key in the same place on the layer
that will be selected when that Fn key is pressed; otherwise the keyboard
will rapidly flick between two layers

.. Select (Base, , , ) scancodes

These four scancodes allow selecting a layer semi-permanently without having
to hold keys. This is useful for remapping an entire keyboard to an alternative
layout, such as Dvorak/Colemak etc.

For example, if “Select ” is pressed, Layer will be used as the new “default”
layer until either the keyboard is unplugged/rebooted, or another Select key
(such as “Select Base”) is pressed.

Fn keys are still respected. Once they are released, the keyboard will return
to the default layer set by the Select key.

.. Expansion header

The -pin expansion header (covered later) can be used with a physical external
switch to select certain layers. It works by assigning the external switch to a
specified Fn key. The caveats listed in Section .. on the previous page still
apply.

 Column skips

Figure :  “Kishsaver”—Columns , , , , ,  and  skipped

Some keyboards don’t use all  columns.
There is a scan-rate performance benefit gained by setting the columns to

be skipped, as shown in Figure . As usual, make sure to use the “Store in
EEPROM” pushbutton to make the change persistent.



Skipping columns is an absolute must on certain keyboards that have unused
columns tied to ground within the pad card itself. Driving these columns will
cause unreliable sensing, and may eventually damage the controller. So far, the
known keyboards that do this are  “Kishsavers” and  derivatives, but
it is worthwhile remembering this functionality if you are having issues on a
smaller keyboard.

 Expansion Header

Figure : Expansion header pin assignment

Figure : Expansion header on PCB

The expansion header is the -pin right-angle header mounted next to the
micro-USB socket on the controller (be warned—it isn’t an AVR ISP header!).



This presents V (VCC), ground, and four GPIO pins from the microcon-
troller, as shown in Figure  on the previous page. Pin —VCC—is identified
on the controller by being soldered to a square pad, as shown in Figure  on the
preceding page; this is the lower-right pin when viewing the controller from
a normal typing position, or the lower-left pin if viewing the ° bent pins
head-on.

There are are currently three ways to use the expansion header, all selectable
via the “Mode” drop-down box underneath “Expansion header” (like before, be
sure to store your changes):

. Solenoid/Buzzer

This is primarily designed to interface with the Solenoid-Driver PCB (covered
in a separate manual), however can be used with other buzzers, as long as they
don’t source more than –mA from the output pin (an example is the 
Kishsaver’s buzzer).

The solenoid will be fired whenever a key is pressed; excluding Fn keys and
Ctrl/Alt/GUI keys (shift keys will actuate the solenoid).

As keys can be pressed faster than the solenoid can reset in some cases, the
controller will queue up to  solenoid clicks.

The individual pins on the expansion header are used as follows:

• Pin  (PB) is set high when the controller has finished enumerating over
USB, and left on until the controller is unplugged or the PC puts the
controller to sleep

• Pin  (PB) is set high when a key is pressed, starting a timer

• When the timer hits the time set in “Extend time (ms)”, Pin  is set low

• When the timer hits the time set in “Retract time (ms)”, Pin  will be set
high once again if there is another solenoid click queued up, and the cycle
will repeat

An example of hooking up a  Kishsaver’s buzzer is shown part-way
down in this forum post.

. Lock LEDs

No Model F keyboards except for the PC-AT ever came with lock LEDs; however,
external LEDs could optionally be wired up using the expansion port.

The pins are assigned as follows:

• Pin  (PB) is assigned to the Scroll Lock LED

• Pin  (PB) is assigned to the Caps Lock LED

• Pin  (PB) is assigned to the Num Lock LED

PC-ATs can be rewired without having to make a new cable by shuffling
some pins inside the -pin female connector the LED PCB is fitted with. The
original IBM mapping—using pin labels from the LED PCB end—is as follows:

A Caps Lock LED



http://deskthority.net/post163441.html#p163441

A Scroll Lock LED

A (not connected)

B Num Lock LED

B GND

B VCC

The actual female connector pinout doesn’t match this, so be sure to trace
through the wires.

. Solenoid/Buzzer + Lock Switch

This is a combination of the Solenoid mode from above, with the addition of a
single input from an external switch.

There are a variety of modes here that all work similarly, but with different
functions:

• Caps Lock

• Shift Lock

• Num Lock

• Fn(, , ) Lock

Each one is suffixed with either “NO” or “NC”. This refers to “Normally
Open” or “Normally Closed”; the appropriate one should be chosen to reflect
the configuration of the switch.

The pin assignment is the same as in Section . on the previous page;
however the input is taken from pin  (PB). A pull-up resistor is switched on
for pin , so the switch should be connected so it will connect the pin to ground
when activated.

There are some things to be aware of when using the lock modes:

• When changing between options, the keyboard may end up still set to one
of the previous states—you may need to cycle the relevant function (Caps
Lock etc.) to get back to a sensible state

• With Caps Lock and Num Lock, the controller only sets the relevant lock
when a change-of-state of the switch occurs. This means you can still
toggle Caps/Num Lock after you’ve set the switch

• Fn(, , ) lock works simply by “holding down” the corresponding Fn
key. Take this into account with layer condition combinations, and Select
(Base, , , ) keys.

• Caps/Num Lock can only work by knowing the current Caps/Lock state
on the OS-side; the controller determines this by monitoring the lock
LEDs sent over USB (which are still sent by the OS even if you don’t have
any). If you have these disabled, or set to do something unusual, you may
find the Caps/Num Lock switch is unreliable



 Updating firmware

The controller firmware can be updated over USB without having to open
the keyboard. As mentioned above in Section  on page , the -pin expan-
sion header is not an AVR programming header—programming is performed
exclusively with the USB DFU protocol.

Updated firmware can be either compiled from the source distribution, or
downloaded as pre-compiled hex files from http://downloads.cornall.co/ibm-
capsense-usb. Firmware is specific to an individual controller type and board
revision; make sure to download the right type! Model-F-USB-Rev controllers
will be named in the format ibm_capsense_usb_model-f_rev-_x.y.z.hex.

The DFU bootloader can be entered by clicking the “Enter bootloader” push-
button in the software GUI. Alternatively, in the worst case, the test pads on
the underside of the controller can be used to force it into DFU mode; if the
PROG pad is shorted out when either RESET pad is momentarily shorted, or the
controller is first plugged into USB, it will enter the bootloader.

When updating the firmware, in many cases you will want to update the
OS-side utility software to match after the upgrade.

There are two common programs used to program AVR microcontrollers
over DFU:

. dfu-programmer

dfu-programmer is probably available in your package manager if you’re on
Linux or BSD.

Pre-compiled executables are available for Windows users (along with
drivers) from the project’s homepage.

Mac OS X users can install it from MacPorts:

sudo port i n s t a l l dfu−programmer

Usage is simple (omit sudo prefix if on Windows or you have user permis-
sions for the DFU device):

sudo dfu−programmer atmegau erase
sudo dfu−programmer atmegau f l a s h hexfilename
sudo dfu−programmer atmegau r e s e t

. Atmel FLIP

Atmel’s own DFU programming application is available from their website. It
is a graphical Java program; versions for Windows and Linux are available.

Be sure to specify the correct microcontroller; the AVR used in the ibm-
capsense-usb controllers is an ATmegaU.

 Troubleshooting

Contactless capacitive keyboard sensing is more complex than normal switched-
contact sensing, and several things can go wrong. Most problems can be solved
relatively easily however.



http://downloads.cornall.co/ibm-capsense-usb
http://downloads.cornall.co/ibm-capsense-usb
http://dfu-programmer.sourceforge.net/
http://www.atmel.com/tools/FLIP.aspx

Some other issues surface in relation to layers and other more advanced
functionality.

The following provides some pointers; however, assistance is available on
the relevant forum threads on Deskthority and Geekhack.

. Unreliable sensing

This is by far the most common problem, and there are several reasons, all
which are easily solved. Use the “Status” overview to determine actual sense
state to eliminate scancodes and your OS as a problem.

Common causes:

• Your keyboard may have one or more unused column lines tied to ground.
This will definitely be the case if it’s a  “Kishsaver”. Use a multimeter
to check—reference Figure  on page —then use the “Column skips”
functionality (Section  on page ) to avoid scanning those columns.

• The ribbon cable hasn’t been soldered correctly, or is shorting to something
on the controller. Check all connections and look on both sides of the
controller for bridged solder.

• The chassis ground connection from the bracket to the controller isn’t
making good connection; leaving this unconnected leaves the keyboard
very prone to electrical interference. Make sure the screw is tight and that
the pad is making good contact to the bracket.

• The voltage threshold may be incorrectly set. Before trying auto-calibration,
make sure you can manually calibrate it first. Some keyboards won’t auto-
calibrate well; a manual calibration value can be saved in the EEPROM.
See Section . on page  for instructions.

• You don’t have a compatible keyboard; this is unlikely unless you have
a  or related keyboard, and haven’t installed the adaptor (see Ap-
pendix A on the following page). Check Section  on page .

• Lastly—hopefully an unlikely cause—you have mounted the controller
upside-down or back-to-front. Check Figure  on page  to make sure you
have installed it correctly.

. Layers

When faced with layer selection issues, first check your firmware version—the
firmware should be at least .., as layer evaluation has changed significantly
starting from this version.

.. Layers aren’t selected when using Fn keys

It is necessary to set up Layer Condition (see Section .. on page ) first. Make
sure that the mapping between your chosen Fn key points to the correct layer.



.. Rapid changing between layers with Fn keys

Because the controller evaluates function keys on subsequent layers as it changes
into them, it is usually recommended to map a Fn key to the same physical
position in both the base layer and the subsequent layer.

If the physical key isn’t mapped to the same Fn key in the next layer (for
example, it is set to “(IGNORED)” or a normal keyboard key), then the keyboard
will see the Fn key, change into the next layer, then on the next scan see that the
Fn key is no longer pressed and drop back to the base layer.

.. Layers aren’t selected with Select keys/don’t reach expected layer
with Fn Lock switch

This requires some care; layer locks (through external switches on the expansion
port—see Section . on page ) simply simulate holding down a Fn key. Check
that the combination of a layer selection and the simulated pressed Fn key give
the correct resulting layer (remember, Fn keys are evaluated on subsequent
layers).

Appendix A: Installation in s and derivatives

The s, despite having the same -position .mm pitch ribbon cable,
have a very different pinout from the standard Model F keyboards; compare
Figure  with Figure  on page . In addition, the matrix is x instead of
x.

Figure : Pinout of / ribbon cable

Because the rows are on the right-hand-side of the ribbon (when viewing
the keyboard from a normal typing position) instead of the left, this means
the controller must be mounted flipped. In addition, an adaptor is required to
match the different pinout; the internal routing of this is shown in Figure
 on the next page.
An actual Model-F-USB-Rev controller with the  adaptor fitted is

shown in Figure  on page . Note how the controller has been rotated
upside-down, and the USB cable now exits on the left-hand-side; a chassis
ground wire now exits on the right-hand-side.

A. Mechanical installation

First, remove the old controller—Section . on page  is still relevant.



Figure : Schematic of  adaptor

A.. Solder ribbon cable

Solder the new controller to the ribbon cable, as described earlier. Make sure the
controller is orientated the correct way. The green/yellow ground wire should
be on the right-hand side of the keyboard, and the controller should be upside
down (you won’t be able to read the text/logo). The ribbon cable will enter the
adaptor without passing over the controller, and you will be soldering within
the white box surrounding the holes on the back of the adaptor (see Figure 
on the following page).

Make sure the solder joints are solid and there is no bridging between pins.

A.. Attach ground wire

Attach the ground wire to the nearest bracket used to retain the old controller.
A good connection here is very important, otherwise the keyboard will be very
sensitive to stray electrical noise.



Figure : Model-F-USB-Rev controllers fitted with  adaptors, showing
correct orientation

Figure :  adaptor, back side (looking over controller); solder within white
box, ribbon enters opposite side shown

A.. Mounting

As the mounting screws are in very different positions on the s compared
to a standard Model F, it is unlikely that you will be able to attach the controller
to one of the brackets. Instead you will have to rely on the ribbon cable and
the ground wire to support it. Take great care to check for possible shorts—
make sure the controller will not touch anything metallic; you may need to use
electrical tape to protect it from its surroundings.

A.. Solenoid and switch

The solenoid can be used with the solenoid driver board; check the separate
solenoid driver installation manual for details.

The blue switch from the old controller can be desoldered and used for
Caps/Shift/Num/Fn Lock; the supplied ribbon cable with the solenoid driver
has two free wires to connect it (blue is V, purple is input pin). Mechanical
mounting of the switch is not covered in this manual.

A. Controller setup

Setting up the controller on a  is largely the same as in Section  on page .
However, you will want to set the controller to skip columns , ,  and 
(see Section  on page ).



You will find that the matrix presented within the software is flipped left-to-
right from actual keyboard; this is because the controllre has been flipped left-to-
right to cope with the ribbon cable’s inverse pinout. This won’t affect anything,
other than making it slightly unintuitive when mapping the scancodes.



	Compatibility
	Required parts and tools
	Precautions
	Static electricity
	Removing/reinstalling parts
	Cabling
	Short circuits
	Cleanliness

	Removal of old controller and preparation
	Opening case
	Removing old controller

	New controller installation
	Mechanical installation
	Software installation
	Linux and BSD
	Windows
	Mac OS X

	Controller setup
	Initial voltage threshold setting
	``Current threshold''
	``State'' grid
	Setting threshold

	Assigning base scancodes
	Nodes with keys
	Leftover nodes, autocalibration
	Loading/Storing/Importing/Exporting

	Function keys and layers
	Layer selection
	Fn(1, 2, 3) scancodes
	Select (Base, 1, 2, 3) scancodes
	Expansion header

	Column skips
	Expansion Header
	Solenoid/Buzzer
	Lock LEDs
	Solenoid/Buzzer + Lock Switch

	Updating firmware
	dfu-programmer
	Atmel FLIP

	Troubleshooting
	Unreliable sensing
	Layers
	Layers aren't selected when using Fn keys
	Rapid changing between layers with Fn keys
	Layers aren't selected with Select keys/don't reach expected layer with Fn Lock switch

	Appendix A: Installation in 3178s and derivatives
	Mechanical installation
	Solder ribbon cable
	Attach ground wire
	Mounting
	Solenoid and switch

	Controller setup

